


A complex number is any number which can be written as $a + ib$ where $a$ and $b$ are real numbers and $i=\sqrt{-1}$
$a$ is the real part of the complex number and $b$ is the imaginary part of the complex number.
Example for a complex number: 9 + i2
Polar and Exponential Forms are very useful in dealing with the multiplication, division, power etc. of complex numbers.
Polar Form of a Complex Number
A complex number $z=x+iy$ can be expressed in polar form as
$z=r \angle \theta = r \ \text{cis} \theta = r(\cos \theta+i\sin \theta) $ (Please not that θ can be in degrees or radians)
where $r =\left|z\right|=\sqrt{x^2 + y^2}$ (note that r ≥ 0 and and r = modulus or absolute value or magnitude of the complex number)
$\theta = \text{arg }z = \tan^{-1}{\left(\dfrac{y}{x}\right)}$(θ denotes the angle measured counterclockwise from the positive real axis.)
θ is called the argument of z. it should be noted that $2\pi \ n \ +\theta $ is also an argument of z where $n = \cdots -3, -2, -1, 0, 1, 2, 3, \cdots$. Note that while there can be many values for the argument, we will normally select the smallest positive value.
Please note that we need to make sure that θ is in the correct quadrant. i.e., θ should be in the same quadrant where the complex number is located in the complex plane. This will be clear from the next topic where we will go through various examples to convert complex numbers between polar form and rectangular form. It is strongly recommended to go through those examples to get the concept clear.
$x = r \ \cos \theta $
$y = r \ \sin \theta$
If $-\pi < \theta \leq\pi, \quad \theta$ is called as principal argument of z(In this statement, θ is expressed in radian)
$r =\left|z\right|=\sqrt{x^2 + y^2}=\sqrt{1^2 + (\sqrt{3})^2}\\=\sqrt{1 + 3}=\sqrt{4} = 2$
$\text{arg }z =\theta = \tan^{-1}{\left(\dfrac{y}{x}\right)} = \tan^{-1}{\left(\dfrac{\sqrt{3}}{1}\right)}\\= \tan^{-1}{\left(\sqrt{3}\right)} =\dfrac{\pi}{3}$
Here the complex number is in first quadrant in the complex plane. The angle we got, $\dfrac{\pi}{3}$ is also in the first quadrant. Hence we select this value.
Hence, the polar form is $z = 2 \angle{\left(\dfrac{\pi}{3}\right)} = 2\left[\cos\left(\dfrac{\pi}{3}\right)+i\sin\left(\dfrac{\pi}{3}\right)\right] $
Similarly we can write the complex number in exponential form as $z=re^{i \theta} = 2e^{\left(\dfrac{i\pi}{3}\right)}$
(Please note that all possible values of the argument, arg z are $2\pi \ n \ + \dfrac{\pi}{3} \text{ where } n = 0, \pm 1, \pm 2, \cdots$. Accordingly we can get other possible polar forms and exponential forms also)
$r =\left|z\right|=\sqrt{x^2 + y^2}=\sqrt{(-1)^2 + (\sqrt{3})^2}\\=\sqrt{1 + 3}=\sqrt{4} = 2$
$\text{arg }z =\theta = \tan^{-1}{\left(\dfrac{y}{x}\right)} = \tan^{-1}{\left(\dfrac{\sqrt{3}}{-1}\right)}\\= \tan^{-1}{\left(-\sqrt{3}\right)}$
Here $-\dfrac{\pi}{3}$ is one value of θ which meets the condition $\theta = \tan^{-1}{\left(-\sqrt{3}\right)}$. But it is in fourth quadrant. We know that θ should be in second quadrant because the complex number is in second quadrant in the complex plane.
Hence $θ = -\dfrac{\pi}{3}+\pi=\dfrac{2\pi}{3} $ which is in second quadrant and also meets the condition $\theta = \tan^{-1}{\left(-\sqrt{3}\right)}$. Hence we take that value.
Hence, the polar form is
$z = 2 \angle{\left(\dfrac{2\pi}{3}\right)} $ $= 2\left[\cos\left(\dfrac{2\pi}{3}\right)+i\sin\left(\dfrac{2\pi}{3}\right)\right] $
Similarly we can write the complex number in exponential form as $z=re^{i \theta} = 2e^{\left(\dfrac{i \ 2\pi}{3}\right)}$
(Please note that all possible values of the argument, arg z are $2\pi \ n \ + \dfrac{2\pi}{3} \text{ where } n = 0, \pm 1, \pm 2, \cdots$. Accordingly we can get other possible polar forms and exponential forms also)
$r =\left|z\right|=\sqrt{x^2 + y^2}\\=\sqrt{(-1)^2 + (-\sqrt{3})^2}\\=\sqrt{1 + 3}=\sqrt{4} = 2$
$\text{arg }z =\theta = \tan^{-1}{\left(\dfrac{y}{x}\right)}\\= \tan^{-1}{\left(\dfrac{-\sqrt{3}}{-1}\right)}=\tan^{-1}{\left(\sqrt{3}\right)}$
Here $\dfrac{\pi}{3}$ is one value of θ which meets the condition $\theta = \tan^{-1}{\left(\sqrt{3}\right)}$. But it is in first quadrant. We know that θ should be in third quadrant because the complex number is in third quadrant in the complex plane.
Hence $θ =\dfrac{\pi}{3}+\pi=\dfrac{4\pi}{3} $ which is in third quadrant and also meets the condition $\theta = \tan^{-1}{\left(\sqrt{3}\right)}$. Hence we take that value.
Hence, the polar form is
$z = 2 \angle{\left(\dfrac{4\pi}{3}\right)} $ $= 2\left[\cos\left(\dfrac{4\pi}{3}\right)+i\sin\left(\dfrac{4\pi}{3}\right)\right] $
Similarly we can write the complex number in exponential form as $z=re^{i \theta} = 2e^{\left(\dfrac{i \ 4\pi}{3}\right)}$
(Please note that all possible values of the argument, arg z are $2\pi \ n \ + \dfrac{4\pi}{3} \text{ where } n = 0, \pm 1, \pm 2, \cdots$. Accordingly we can get other possible polar forms and exponential forms also)
$r =\left|z\right|=\sqrt{x^2 + y^2}=\sqrt{(1)^2 + (-\sqrt{3})^2}\\=\sqrt{1 + 3}=\sqrt{4} = 2$
$\text{arg }z =\theta = \tan^{-1}{\left(\dfrac{y}{x}\right)}\\= \tan^{-1}{\left(\dfrac{-\sqrt{3}}{1}\right)}\\= \tan^{-1}{\left(-\sqrt{3}\right)}$
Here $-\dfrac{\pi}{3}$ is one value of θ which meets the condition and also in the fourth quadrant. The complex number is also in fourth quadrant.However we will normally select the smallest positive value for θ.
Hence $\theta = -\dfrac{\pi}{3}+2\pi=\dfrac{5\pi}{3}$ which meets the condition $\theta = \tan^{-1}{\left(\sqrt{3}\right)}$ and also is in the fourth quadrant. Hence we take that value.
Hence, the polar form is
$z = 2 \angle{\left(\dfrac{5\pi}{3}\right)}$ $= 2\left[\cos\left(\dfrac{5\pi}{3}\right)+i\sin\left(\dfrac{5\pi}{3}\right)\right] $
Similarly we can write the complex number in exponential form as $z=re^{i \theta} = 2e^{\left(\dfrac{i \ 5\pi}{3}\right)}$
(Please note that all possible values of the argument, arg z are $2\pi \ n \ + \dfrac{5\pi}{3} \text{ where } n = 0, \pm 1, \pm 2, \cdots$. Accordingly we can get other possible polar forms and exponential forms also)
$r =\left|z\right|=\sqrt{x^2 + y^2}=\sqrt{(8)^2 + (0)^2}\\=\sqrt{(8)^2 } = 8$
Here the complex number lies in the positive real axis. Hence $\theta = 0$.
$\text{arg }z =\theta = \tan^{-1}{\left(\dfrac{y}{x}\right)} = \tan^{-1}{\left(\dfrac{0}{8}\right)}\\= \tan^{-1}{0}=0$
Hence, the polar form is $z = 8 \angle{0} = 8\left(\cos 0+i\sin 0\right) $
Similarly we can write the complex number in exponential form as $z=re^{i \theta} = 8e^{0i}$
(Please note that all possible values of the argument, arg z are $2\pi \ n \ + 0 = 2\pi n$ where $n=0, \pm 1, \pm 2, \cdots$ Accordingly we can get other possible polar forms and exponential forms also)
$r =\left|z\right|=\sqrt{x^2 + y^2}=\sqrt{(-8)^2 + (0)^2}\\=\sqrt{(-8)^2 } = 8$
Here the complex number lies in the negative real axis. Hence $\theta =\pi$.
Hence, the polar form is $z = 8 \angle{\pi} = 8\left(\cos\pi+i\sin\pi\right) $
Similarly we can write the complex number in exponential form as $z=re^{i \theta} = 8e^{i\pi}$
(Please note that all possible values of the argument, arg z are $2\pi n+\pi \text{ where } n = 0, \pm 1, \pm 2, \cdots$. Accordingly we can get other possible polar forms and exponential forms also)
$r =\left|z\right|=\sqrt{x^2 + y^2}=\sqrt{(0)^2 + (8)^2}\\=\sqrt{(8)^2 } = 8$
Here the complex number lies in the positive imaginary axis. Hence $\theta =\dfrac{\pi}{2}$
Hence, the polar form is
$z = 8 \angle{\dfrac{\pi}{2}}=8\left[\cos\left(\dfrac{\pi}{2}\right)+i\sin\left(\dfrac{\pi}{2}\right)\right]$
Similarly we can write the complex number in exponential form as $z=re^{i \theta} = 8e^{\left(\dfrac{i\pi}{2}\right)}$
(Please note that all possible values of the argument, arg z are $2\pi \ n \ + \dfrac{\pi}{2} \text{ where } n = 0, \pm 1, \pm 2, \cdots$. Accordingly we can get other possible polar forms and exponential forms also)
$r =\left|z\right|=\sqrt{x^2 + y^2}=\sqrt{(0)^2 + (-8)^2}\\=\sqrt{(-8)^2 } = 8$
Here the complex number lies in the negavive imaginary axis. Hence $\theta = -\dfrac{\pi}{2}$.
However we will normally select the smallest positive value for θ. Hence $\theta = -\dfrac{\pi}{2}+2\pi=\dfrac{3\pi}{2}$
Hence, the polar form is
$z = 8 \angle{\dfrac{3\pi}{2}}$ $=8\left[\cos\left(\dfrac{3\pi}{2}\right)+i\sin\left(\dfrac{3\pi}{2}\right)\right] $
Similarly we can write the complex number in exponential form as $z=re^{i \theta} = 8e^{\left(\dfrac{i 3\pi}{2}\right)}$
(Please note that all possible values of the argument, arg z are $2\pi \ n \ + \dfrac{3\pi}{2} \text{ where } n = 0, \pm 1, \pm 2, \cdots$. Accordingly we can get other possible polar forms and exponential forms also)
$x=r\cos\theta$ $= 2 \cos \dfrac{5\pi}{3} = 2 \times \dfrac{1}{2} = 1$
$y=r\sin\theta$ $= 2 \sin \dfrac{5\pi}{3} = 2 \times\left(-\dfrac{\sqrt{3}}{2}\right) = -\sqrt{3}$
$z=x+iy = 1 - i\sqrt{3}$
$x=r\cos\theta= 8 \cos \dfrac{\pi}{2} = 2 \times 0 = 0$
$y=r\sin\theta= 8 \sin \dfrac{\pi}{2} = 8 \times 1 = 8$
$z=x+iy = 0 + 8i = 8i$
$x=r\cos\theta$ $= 2 \cos \dfrac{2\pi}{3} = 2 \times\left(-\dfrac{1}{2}\right)= -1$
$y=r\sin\theta$ $= 2 \sin \dfrac{2\pi}{3} = 2 \times \dfrac{\sqrt{3}}{2}=\sqrt{3}$
$z=x+iy = -1 + i\sqrt{3}$
$x=r\cos\theta= 2 \cos \dfrac{\pi}{3} = 2 \times \dfrac{1}{2}= 1$
$y=r\sin\theta= 2 \sin \dfrac{\pi}{3} = 2 \times \dfrac{\sqrt{3}}{2}=\sqrt{3} $
$z=x+iy = 1 + i\sqrt{3}$
Addition, subtraction, multiplication and division can be carried out on complex numbers in either rectangular form or polar form.
Addition and subtraction of complex numbers is easy in rectangular form.
Multiplication and division of complex numbers is easy in polar form.
To add complex numbers, add their real parts and add their imaginary parts.
Example: Find (9 + i2) + (8 + i6)
(9 + i2) + (8 + i6) = (9 + 8) + i(2 + 6) = 17 + i8
To subtract complex numbers, subtract their real parts and subtract their imaginary parts.
Example: Find (9 + 2i) - (8 + 6i)
(9 + 2i) - (8 + 6i) = (9 - 8) + i(2 - 6) = 1 - i4
A. Multiplication of Complex Numbers in Rectangular Form
Example: Find (9 + 2i)(8 - 6i)
$(9 + i2)(8 - i6)\\= 72 - i54 + i16 - i^2 12\\= 72 - i(54 - 16) + 12\\= 84 - i38$
B. Multiplication of Complex Numbers in Polar Form
Example: Find $3\angle 30° \times 4\angle 40°$
$3\angle 30° \times 4\angle 40°\\=\left(3 \times 4\right) \angle\left(30° + 40°\right)\\= 12 \angle 70°$
A. Division of Complex Numbers in Rectangular Form
Example: Find $\dfrac{(9 + 2i)}{(8 - 6i)}$
$\dfrac{(9 + 2i)}{(8 - 6i)}\\~\\=\dfrac{(9 + 2i)(8 + 6i)}{(8 - 6i)(8 + 6i)}\\~\\=\dfrac{72 + 54i + 16i -12}{64 + 36}\\~\\=\dfrac{60 + 70i}{100}\\ = .6 + .7i$
B. Division of Complex Numbers in Polar Form
Example: Find $\dfrac{5\angle 135° }{4\angle 75°}$
$\dfrac{5\angle 135° }{4\angle 75°} =\dfrac{5}{4}\angle\left( 135° - 75°\right) =\dfrac{5}{4}\angle 60° $
$r=\sqrt{\left(-1\right)^2 +\left(\sqrt{3}\right)^2}\\=\sqrt{1 + 3}=\sqrt{4} = 2$
$\theta = \tan^{-1}{\left(\dfrac{\sqrt{3}}{-1}\right)} = \tan^{-1}{\left(-\sqrt{3}\right)}\\=\dfrac{2\pi}{3}$
(∵The complex number is in second quadrant)
Hence,
$\left(2 \angle 135°\right)^5 = 2^5\left(\angle 135° \times 5\right)\\= 32 \angle 675° = 32 \angle -45°\\=32\left[\cos (-45°)+i\sin (-45°)\right]\\=32\left[\cos (45°) - i\sin (45°)\right]\\= 32\left(\dfrac{1}{\sqrt{2}}-i \dfrac{1}{\sqrt{2}}\right)\\=\dfrac{32}{\sqrt{2}}(1-i)$
$\left[4\left(\cos 30°+i\sin 30°\right)\right]^6 \\= 4^6\left[\cos\left(30° \times 6\right)+i\sin\left(30° \times 6\right)\right]\\=4096\left(\cos 180°+i\sin 180°\right)\\=4096(-1+i\times 0)\\=4096 \times (-1)\\=-4096$
$\left(2e^{0.3i}\right)^8 = 2^8e^{\left(0.3i \times 8\right)} = 256e^{2.4i}\\=256(\cos 2.4+i\sin 2.4)$
$32i = 32\left(\cos \dfrac{\pi}{2}+i\sin \dfrac{\pi}{2}\right)\quad$ (converted to polar form, reference)
The 5th roots of 32i can be given by
$w_k\\=r^{1/n}\left[\cos\left(\dfrac{\theta + 2\pi k}{n}\right)+i\sin\left(\dfrac{\theta + 2\pi k}{n}\right)\right]\\=32^{1/5}\left[\cos\left(\dfrac{\dfrac{\pi}{2}+2\pi k }{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{2}+2\pi k}{5}\right)\right]\\=2\left[\cos\left(\dfrac{\dfrac{\pi}{2}+2\pi k }{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{2}+2\pi k}{5}\right)\right]$
where k = 0, 1, 2,3 and 4
$w_0 = 2\left[\cos\left(\dfrac{\dfrac{\pi}{2}+0}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{2}+0}{5}\right)\right]$ $= 2\left(\cos \dfrac{\pi}{10}+i\sin \dfrac{\pi}{10}\right)$
$w_1 = 2\left[\cos\left(\dfrac{\dfrac{\pi}{2}+2\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{2}+2\pi}{5}\right)\right]$ $= 2\left(\cos \dfrac{\pi}{2}+i\sin \dfrac{\pi}{2}\right) = 2i$
$w_2 = 2\left[\cos\left(\dfrac{\dfrac{\pi}{2}+4\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{2}+4\pi}{5}\right)\right]$ $= 2\left(\cos \dfrac{9\pi}{10}+i\sin \dfrac{9\pi}{10}\right)$
$w_3 = 2\left[\cos\left(\dfrac{\dfrac{\pi}{2}+6\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{2}+6\pi}{5}\right)\right]$ $= 2\left(\cos \dfrac{13\pi}{10}+i\sin \dfrac{13\pi}{10}\right)$
$w_4 = 2\left[\cos\left(\dfrac{\dfrac{\pi}{2}+8\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{2}+8\pi}{5}\right)\right]$ $= 2\left(\cos \dfrac{17\pi}{10}+i\sin \dfrac{17\pi}{10}\right)$
$-4 - 4\sqrt{3}i = 8\left(\cos 240°+i\sin 240°\right)\quad$
(converted to polar form, reference. Here we took the angle in degrees. Remember that we can use radians or degrees)
The cube roots of $-4 - 4\sqrt{3}i$ can be given by
$w_k\\=r^{1/n}\left[\cos\left(\dfrac{\theta + 360°k }{n}\right)+i\sin\left(\dfrac{\theta + 360°k}{n}\right)\right]\\=8^{1/3}\left[\cos\left(\dfrac{\text{240°+360°k}}{3}\right)+i\sin\left(\dfrac{\text{240°+360°k}}{3}\right)\right]\\=2\left[\cos\left(\dfrac{240°+ 360°k }{3}\right)+i\sin\left(\dfrac{240° + 360°k}{3}\right)\right]$
where k = 0, 1 and 2
$w_0\\=2\left[\cos\left(\dfrac{240°+ 0}{3}\right)+i\sin\left(\dfrac{240° + 0}{3}\right)\right]\\= 2\left(\cos 80°+i\sin 80°\right)$
$w_1\\=2\left[\cos\left(\dfrac{\text{240°+360°}}{3}\right)+i\sin\left(\dfrac{\text{240°+360°}}{3}\right)\right]\\=2\left(\cos 200°+i\sin 200°\right)$
$w_2\\=2\left[\cos\left(\dfrac{240°+ 720°}{3}\right)+i\sin\left(\dfrac{240° + 720°}{3}\right)\right]\\ =2\left(\cos 320°+i\sin 320°\right)$
$1=1\left(\cos 0+i\sin 0\right)$(Converted to polar form, reference. Here we took the angle in degrees. Remember that we can use radians or degrees)
The cube roots of 1 can be given by
$w_k\\=r^{1/n}\left[\cos\left(\dfrac{\theta + 360°k }{n}\right)+i\sin\left(\dfrac{\theta + 360°k}{n}\right)\right]\\\\=1^{1/3}\left[\cos\left(\dfrac{\text{0°+360°k}}{3}\right)+i\sin\left(\dfrac{\text{0°+360°k}}{3}\right)\right]\\=\cos (120°k)+i\sin (120°k)$
where k = 0, 1 and 2
$w_0 =\cos\left(120° \times 0\right)+i\sin\left(120°\times 0\right)$ $=\cos 0+i\sin 0 = 1$
$w_1 =\cos\left(120° \times 1\right)+i\sin\left(120°\times 1\right)\\=\cos 120°+i\sin 120°\\=-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}\\=\dfrac{-1 + i\sqrt{3}}{2}$
$w_2 =\cos\left(120° \times 2\right)+i\sin\left(120°\times 2\right)\\=\cos 240°+i\sin 240°\\=-\dfrac{1}{2} - i\dfrac{\sqrt{3}}{2}\\=\dfrac{-1 - i\sqrt{3}}{2}$