X  
View & Edit Profile Sign out
X
Sign in
Google
Facebook
Twitter
Yahoo
LinkedIn
X
Discussion Board
showing 1-1 of 1 (answers : 1, comments : 0),   sorted newest to the oldest
Question
Sum of the series in arithmetic progression is $72.$ The first term is $17$ and the common difference is $-2.$ Find the number of terms.
 
(0) (0) Comment Answer
numbers
2017-01-21 22:16:35 
Lizza fobb
1 Answer
It is easy to see $17+15+13+11+9+7=72$ and therefore number of terms is $6$. See the following solution using the formulas of arithmetic progression.

$S_n=\dfrac{n}{2}[2a+(n-1)d]\\
72=\dfrac{n}{2}[2√ó17+(n-1)(-2)]\\
72=\dfrac{n}{2}(34-2n+2)\\
72=\dfrac{n}{2}(36-2n)\\
72=n(18-n)\\
72=18n-n^2\\
n^2-18n+72=0\\
(n-6)(n-12)=0\\
n=6\text{ or }12$

So, number of terms can be $6$ or $12$

If number of terms is $6$,
$17+15+13+11+9+7=72$

If number of terms is $12$,
$17+15+13+11+9+7+5$ $+3+1+(-1)+(-3)+(-5)=72$
 
(0) (0) Comment
2017-01-21 22:41:56 
jiju (Junior Maths Expert, careerbless.com)
Answer this Question

Name
9 + 2 = (please answer the simple math question)
Post Your Answer