X  
View & Edit Profile Sign out
X
Sign in
Google
Facebook
Twitter
Yahoo
LinkedIn
X
Discussion Board
showing 1-1 of 1 (answers : 1, comments : 0),   sorted newest to the oldest
Question
$(x+y)+(x^2+xy+y^2)+(x^3+x^2y+xy^2+y^3)+\cdots\text{ to }n\text{ terms }$
Find the sum of the above series?
 
(0) (0) Comment Answer
numbers
2016-10-29 18:00:14 
Rachita Aggarwal
1 Answer
$(x+y)+(x^2+xy+y^2)+(x^3+x^2y+xy^2+y^3)+\cdots\\
=\dfrac{1}{x-y}\left[(x^2-y^2)+(x^3-y^3)+(x^4-y^4)+\cdots\right]\\
=\dfrac{1}{x-y}\left[(x^2+x^3+x^4+\cdots)-(y^2+y^3+y^4+\cdots)\right]\\
=\dfrac{1}{x-y}\left[\dfrac{x^2(x^n-1)}{x-1}-\dfrac{y^2(y^n-1)}{y-1}\right]~~\text{where } x\ne1;y\ne1, x\ne y$
 
(0) (0) Comment
2016-10-29 18:20:15 
Javed Khan (Senior Math Expert, careerbless.com)
Answer this Question

Name
3 + 4 = (please answer the simple math question)
Post Your Answer