Cube roots of perfect cubes can be found out faster using Vedic Mathematics.

1. To calculate cube root of any perfect cube quickly, we need to remember the cubes of $1$ to $10$ (provided below).

$1^3=1\\2^3=8\\3^3=27\\4^3=64\\5^3=125\\6^3=216\\7^3=343\\8^3=512\\9^3=729\\10^3=1000$

2. From the above cubes of $1$ to $10,$ we need to remember an interesting property.

$1^3=1$ | $\Rightarrow$ | If last digit of perfect cube $=1,$ last digit of cube root $=1$ |

$2^3=8$ | $\Rightarrow$ | If last digit of perfect cube $=8,$ last digit of cube root $=2$ |

$3^3=27$ | $\Rightarrow$ | If last digit of perfect cube$=7,$ last digit of cube root $=3$ |

$4^3=64$ | $\Rightarrow$ | If last digit of perfect cube$=4,$ last digit of cube root $=4$ |

$5^3=125$ | $\Rightarrow$ | If last digit of perfect cube $=5,$ last digit of cube root $=5$ |

$6^3=216$ | $\Rightarrow$ | If last digit of perfect cube$=6,$ last digit of cube root $=6$ |

$7^3=343$ | $\Rightarrow$ | If last digit of perfect cube$=3,$ last digit of cube root $=7$ |

$8^3=512$ | $\Rightarrow$ | If last digit of perfect cube$=2,$ last digit of cube root $=8$ |

$9^3=729$ | $\Rightarrow$ | If last digit of perfect cube$=9,$ last digit of cube root $=9$ |

$10^3=1000$ | $\Rightarrow$ | If last digit of perfect cube$=0,$ last digit of cube root $=0$ |

It’s very easy to remember the relations given above as follows.

$1\implies 1$ | same numbers |

$8 \implies 2$ | $10$'s complement of $8$ is $2$ and $8+2=10$ |

$7 \implies 3$ | $10$'s complement of $7$ is $3$ and $7+3=10$ |

$4 \implies 4$ | same numbers |

$5 \implies 5$ | same numbers |

$6 \implies 6$ | same numbers |

$3 \implies 7$ | $10$'s complement of $3$ is $7$ and $3+7=10$ |

$2 \implies 8$ | $10$'s complement of $2$ is $8$ and $2+8=10$ |

$9 \implies 9$ | same numbers |

$0 \implies 0$ | same numbers |

Also see

$8 \implies 2$ and $2 \implies 8$

$7 \implies 3$ and $3 \implies 7$

If we observe the properties of numbers, Mathematics is a very interesting subject and easy to learn. Now let’s see how we can actually find out cube roots of perfect cubes faster.

**Step 1**

Identify the last three digits and make groups of three three digits from right side. i.e., $4913$ can be written as

$4,\quad 913$

**Step 2**

Take the last group which is $913.$ The last digit of $913$ is $3.$

Remember point 2, If last digit of perfect cube$=3,$ last digit of cube root $=7$

Hence the right most digit of the cube root $=7$

**Step 3**

Take the next group which is $4$

Find out which maximum cube we can subtract from $4$ such that the result $\ge 0$

We can subtract $1^3=1$ from $4$ because $4-1=3$ (If we subtract $2^3=8$ from $4,$ $4–8=-4$ which is $\lt 0$)

Hence the left neighbor digit of the answer $=1$

i.e., answer $=17$

**Step 1**

Identify the last three digits and make groups of three three digits from right side. i.e., $804357$ can be written as

$804,\quad 357$

**Step 2**

Take the last group which is $357.$ The last digit of $357$ is $7.$

Remember point 2, If last digit of perfect cube $=7$ , last digit of cube root $=3$

Hence the right most digit of the cube root $=3$

**Step 3**

Take the next group which is $804$

Find out which maximum cube we can subtract from $4$ such that the result $\ge 0$

We can subtract $9^3=729$ from $804$ because $804-729=75$ (If we subtract $10^3=1000$ from $729,$ $729–1000=-271$ which is $\lt 0$)

Hence the left neighbor digit of the answer $=9$

i.e., answer $=93$

$33076,\quad161$

Last digit of $161$ is $1$. Therefore, last digit of the cube root is $1$

$33076 - 32^3 \gt 0$

(Note that $33076-33^3 \lt 0$).

So, left side of the answer is $32$

Answer is $321$

For larger numbers, this method may not be that easy and to get the left side $32$, some calculations are involved. However, faster than the conventional way. If one can remember cubes of numbers up to $20,$ certainly more numbers can be covered easily.

process is all same u have to solve unit digit rule as above then neglect last 3 digits and find the no whose cube value is nearest to remaining 7 digits.

if u cant then do again or reply back.

Post Your Comment