Mathematical Expressions Supported - Online Scientific Calculator


Expression Entered Mathematics Processed
1+2*3-1/2+(1*2)/(1*4) $1+2\times3-\dfrac{1}{2}+\dfrac{\left(1\times2\right)}{\left(1\times4\right)}$
5e+1/2pi $5\times e+\dfrac{1}{2}\times \pi$
2^3+2^(1+2) $2^{3}+2^{\left(1+2\right)}$
sqrt(2) + sqrt3(2) ${\sqrt{2}}+{\sqrt[3]{2}}$
sqrt(12,4) + sqrt(100,2/3) + sqrt(100/4,3) ${\sqrt[{4}]{12}}+{\sqrt[{\dfrac{2}{3}}]{100}}+{\sqrt[{3}]{\dfrac{100}{4}}}$
8! $8!$
sin(10) + cos(10) + tan(10) $\sin\left(10\right)+\cos\left(10\right)+\tan\left(10\right)$
csc(10) + sec(10) + cot(10) $\csc\left(10\right)+\sec\left(10\right)+\cot\left(10\right)$
asin(10) + acos(10) + atan(10) $\text{asin}\left(10\right)+\text{acos}\left(10\right)+\text{atan}\left(10\right)$
acsc(10) + asec(10) + acot(10) $\text{acsc}\left(10\right)+\text{asec}\left(10\right)+\text{acot}\left(10\right)$
sinh(10) + cosh(10) + tanh(10) $\sinh\left(10\right)+\cosh\left(10\right)+\tanh\left(10\right)$
asinh(10) + acosh(10) + atanh(10) $\text{asin}h\left(10\right)+\text{acos}h\left(10\right)+\text{atan}h\left(10\right)$
log(10)+ln(10)+lg2(20) $\log_{10}\left(10\right)+\ln\left(10\right)+\log_{2}\left(20\right)$
log(10,3)+log(20,(1+7)) $\log_{3}\left(10\right)+\log_{\left(1+7\right)}\left(20\right)$
10^20+e^4.4+2^12 $10^{20}+e^{4.4}+2^{12}$
ncr(5,2)+npr(5,2) $\left(\dfrac{5!}{{2!\times \left(5-2\right)!}}\right)+\left(\dfrac{5!}{\left(5-2\right)!}\right)$
(20^(sin(2log(1/2))+1))/(sqrt(3,12^(1+sqrt(4,3)))+(1/2(1+2) $\dfrac{\left(20^{\left(\sin\left(2\times \log_{10}\left(\dfrac{1}{2}\right)\right)+1\right)}\right)}{\left({\sqrt[{12^{\left(1+{\sqrt[{3}]{4}}\right)}}]{3}}+\left(\dfrac{1}{2}\times \left(1+2\right)\right)\right)}$
sinh(1/(-sin(45)-2*csc(21))+2log(23,2^3) $\sinh\left(\dfrac{1}{\left(-\sin\left(45\right)-2\times \csc\left(21\right)\right)}+2\times \log_{2^{3}}\left(23\right)\right)$

 
 
 
 
Comments(1) Sign in (optional)
showing 1-1 of 1 comments,   sorted newest to the oldest
Mariam
2015-03-07 20:18:50 
it's not solving the integration as simple as this \int { 5x\sqrt { { (4x^{ 2 }-11) } } dx } 
(0) (0) Reply
 
Add a new comment...  (Use Discussion Board for posting new aptitude questions.)

Name:
Email: (optional)
6 + 0 = (please answer the simple math question)

Post Your Comment
X  
View & Edit Profile Sign out
X
Sign in
Google
Facebook
Twitter
Yahoo
LinkedIn
X